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Waveguide Perturbation Techniques in Microwave

Semiconductor Diagnostics*

K. S. CHAMPLIN~, MEMBER, IRE, AND D. B. ARMSTRONG~, STUDENT MEMBER, IRE

Summarg—Scattering processes in semiconductors are often
studied by observing scattering averages with measurements of
various dc transport phenomena. With microwaves, the observation

frequency can be of the order of the scattering frequency so that the

corresponding microwave transport property may be complex. Thus,
in studying detailed scattering mechanisms, a microwave transport

experiment contains potentially more information than the analogous
dc experiment, Thk paper dkcusses perturbation techniques which
are useful in determining the microwave conductivity and low-field

Hall effect of a bulk semiconductor contained in a waveguide from

measurement of the properties of the transmitted wave.

1. INTRODUCTION

E

LECTRICAL transport properties, such as con-

ductivity and Hall effect, contain considerable

information about the processes by which charge

carriers in semiconductors are scattered (i. e., make

spontaneous transitions between quantum states). His-

torically, dc measurements of transport properties have

been a popular and useful tool of semiconductor re-

search. The ac transport properties observed when the

frequency of the electric field is comparable to the fre-

quency of electron- or hole-scattering’ differ from the dc

properties by having frequency dependent real and

imaginary parts. The added data conveyed in this case

contain detailed information about the scattering mech-

anisms and energy band structure that is not found in

the dc measurements.

This, then, is the primary advantage of measuring

transport properties with microwaves rather than with

dc. Nficrowave transport experiments are generally not

well suited to exact analysis, however, because of the

complex nature of the data, the relatively large losses

in the material, and because normal modes are f unc-

tions of the magnetic field. A further complication of

microwave diagnostics (determination of material prop-

erties from microwave measure ments) arises because

transport properties are usually related to measured

quantities by an inverse transcendental equation that

cannot be expressed analytically.
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1 See, e.g., D. Long, “Scattering of conduction electrons by lattice
vibrations in silicon, ” Phys. Refl., ~-ol. 120, pp. 2024–2032; December
15, 1960.

2 The scattering frequency is defined to be 1/(2rr (~) ) where (r)
is the mean relaxation time of the carriers. For acoustical mode
phonon scattering in either n-type silicwr or &type germanium, the
scattering frequency is about 22 Gc at ‘77°K and decreases with de-
creasing temperature.

This paper provides the mathematical basis for de-

termining the microwave conductivity and low -field

Hall effect from measurements of the properties of a

wave transmitted through a section of circular or square

waveguide filled with the semiconductor and uniformly

magnetized in the axial direction. The diagnostic pro-

cedure is taken in two steps:

1) Data obtained from measurements with a finite

sample are converted to data for an infinite sample

by numerically inverting a complex transcendental

equation with a digital computer.

2) “rhe microwave transport properties are then ob-

tained with the aid of explicit expressions derived

from perturbation theory.

The above two steps assume that the magnetic field

causes only first-order changes in the spatial distribu-

tion and propagation constant, respectively, of the

dominant TE waveguide mode. The diagnostic tech-

nique is therefore limited to low magnetic fields and does

not apply to high-field behavior such as cyclotron

resonance.

II. HIGH-FREQUENCY TRANSPORT PROPERTIES

OF CUBIC SEMICONDUCTORS

The relative permittivity of a cubic crystal that is

uniformly magnetized in the Z direction is a tensor of the

form

(q.’ – j,;’) –j(q’ – jq”) o I
.
e, = +j(rJ’ – j?”) (%’– j%”) o ~ (1)

o 0 (,,,’– je,”) I
to the first order in the magnetic field. Assuming spher-

ical constant energy surfaces and no dispersion of the

lattice relative permittivity cl, the tensor elements may

be written

(q’ – je:’) = 6, – j(a,)/cMo) [(-R;;)/’T’l‘2)
and

(7)’ – j,)”) = (UO/@60)WHOBZ /_L–\ (,2) (3)
[ \(l +joJT)’/ /]

where co and ~1{0 are the dc conductivity and CIC IHall

mobility, respectively; BZ is the magnetic flux density;

and r is the phenomenological relaxation time of the

carriers.
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The bracketed quantities in (2) and (3) are, in gen-

eral, complex and frequency dependent. Their real and

imaginary parts are plotted in Figs. 1 and 2 for several

types of scattering. One sees that the real and imaginary

parts of both functions approach unity and zero, respec-

tively, as u(~) approaches zero. For ~(~)<<1, the func-

tions can be expanded to yield

e: = 6, – (fJo/e,) U
(T) c’

“ = (cr,/clle,)

2(@’e,)#HoBz Q7{ = (ao/@co)mroBz q“ = ~T2) “ (~)

The generaI diagnostic problem will be to determine

c,’, e,”, y’, and q“ for arbitrary u{~) from microwave

measurements. The special case of u(~)<<l, where (4)

applies, is of special interest since it typifies room tem-

perature conditions. A single transport experiment in

this range, however, will convey only slightly more

information than a dc experiment.

I 1 I I I I I I 1 I [ 1

“:F’”’IX(FU’’D
0.2 –

01 -

0. , “~~ :

05.12 .5 1,0 2.0 50 10.0 200 500
uJ<T> —

Fig. l—Real and (negative) imaginary parts of bracketed conduc
tivity term in (2). The real part approaches unity and the imag-
inary part approaches zero at low frequency.
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Fig. 2—Real and (negative) imaginary parts of bracketed
Hall term in (3).

8 The averages denoted by the symbol ( ) are IMaxwellian
averages weighted by the electron energy. For the mathematical
definition, see, e.g., R. A. Smith, “Semiconductors,” Cambridge
Urnversity Prese, New York, N. Y., p. 111; 1959.

III. THE DIAGNOSTIC METHOD

A. Correction for Finite Sample Length

Fig. 3 shows a section of circular or square waveguide

filled with semiconductor between Z= O and Z = d. In

the empty part of the waveguide, both the clockwise

(+) and counter-clockwise (–) circularly polarized

dominant TE modes have identical propagation con-

stant YI* = Y1 =j~l. Between Z = O and Z = d, however,

the degeneracy is removed by the axial magnetic field

so that the corresponding propagation constants

72+ = C& +jP2* differ from one another.

Because of the magnetic field, the field distributions of

the normal modes in the filled section of waveguide are

also different from those in the empty section. For

arbitrarily large magnetization, this would result in a

single incident mode exciting an infinite number of

modes at Z = O and Z = d. One can show, however, that

for first-order changes in the field distributions, the

change in the magnitude of the initially excited mode

as well as the magnitude of the higher-order modes are

at most of second order.4 To the first order in the mag-

netic field, therefore, the transmission coefficients of the

two circularly polarized dominant TE modes are still

given by the well-known formula5

just as without magnetic field.

Because of the disparity between propagation con-

stants of clockwise and counter-clockwise dominant

modes, a linearly polarized incident wave at Z = O will

emerge at Z = d elliptically polarized with its polariza-

tion angle rotated. From the theory of the classical

Faraday effect, c one can write

A++ i4– a+ + &
A= a=

2 2

where A is the change in the logarithmic amplitude and

@ is the change in phase of the transmitted wave, X

is its ellipticity (ratio of minor to major axis), and @

is its polarization angle. The quantities in (6) include

the effects of multiple internal reflections. For an in-

finitely long sample, internal reflections are absent and

the corresponding quantities are simply written

4 H. Suhl and L. R. Walker, ‘(Topics in guided wat,e propagation
through gyromagnetic media, Part II I—Perturbation theory and
miscellaneous results, ” Bell Sys. Tech. J., vol. 33, pp. 1160-1 164;
September, 1954.

5 G. C. Montgomery, “Technique of Microwave Measurements,”
M. I.T. Rad. Lab. Ser., McGraw-Hill Book Co., Inc., A’ew York,
N. Y., VO1. 11, p. 564; 1947.

s See, e.g., K Forsterling, ‘{Lehrbuch der Optik, ” S. Hirzel,
Leipzig, Germany, p. 44; 1928.
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~2+ + ~2– h+ + B2–
C22= —–— p, . .–——

2 2

(2 – “+ ; “- l’&+ – P2-
02=–

2
(7)

where rxz, fiz, & and (IZ are the change in logarithmic

amplitude, phase, ellipticity, and polarization angle,

respectively, of the elliptically polarized propagating

wave (all per unit length).

Combining (5), (6) and (7) yields, to the first order

in the magnetic field,

termined from measurements of X and @ with the aid of

(9). We have programmed a computer to invert (8) by

successive interpolation and to then evaluate the four

partial derivatives numerically.

B. Explicit Expressions for Tenso~ Elements

The second step of the diagnostic procedure is made

with the help of the well-known perturbation formula”8

where

and

Eq. (10) gives the difference between the propagation

constants for a particular mode of the empty (subscript
71 = j~l

1) and filled (subscript 2) waveguide !sections, respec-

TZ = CY2+ jf12 tively, in terms of field distributions in those sections.

The integrations are carried across the waveguide with

~ a unit vector in the axial direction.
da,d “

&d = ~ .Y–~#@
Consider the two circularly polarized dominant TE

modes of a circular or square waveguide. The fields in

the empty section are of the form

(9) El* = El’ f jEIV HI* = HI’ f jH1v (11)

The first step of the diagnostic procedure may now be where the superscript indicates the polarization direc-

discussed with reference to Fig. 4, Interferometer nleas- tion of the two degenerate linearly polarized modes

urements of .4 and @ along with /31d yield values of a2d which comprise the circularly polarized mode. To the

and &i by a digital computer inversion of (8). Sinlul- zeroth order in the magnetic field, the electric field of

taneously, the computer uses (8}1 to calculate the four the dominant modes in the filled section may be written

partial derivatives in (9). Finally &d and OZd are de- E,* = Elk. (12a)

Fig.
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Incident Wove Transmitted Wave
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/

EV
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Reflected ‘“ve b d ‘~

Z=tl z=d

3—Circular or square waveguide containing semiconductor.
Linearly polarized TE wave is incident from the left.

The corresponding magnetic field is then

H1* = (@/TJH,* . (l~b)

The first-order change in the propagation constant

YZ* follows by substituting (1), (1 1), (12a) and (12b)

into (10). Noting that

and defining the waveguide constaut K as

interferometer

Measurements s[(Elr x E,’’) .i}(LS

A, O,fid

T

~ Cwnputer —~ d=d, ~ld ~- . ——————

s{EIEII]LY

=
Derivotive$

1

J
8/rz for the square T131n mode

Faraday Effect —— (1+)
Measurements 0.838 for the circular TIEII mode

X,Q — —~ Cd, Q,d
7 Suhl and lValker, op. cit., pp. 1133–1 194.

Fig. 4—First step of diagnostic procedure uses computer to invert 8 K. S. Champlin aud D.. B. .4rmstrong, “Explicit forms for the
complex transcendental equation and to calculate partial deriva- conductivity and permittlvlty of bulk semiconductors in wave-
tives. guides, ” PWJC, IRE ( Correspondence), I-01. 50, p. 232; February, 1962.
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yields

{ (%’ - j%”) T K(T’ - jq”) - 1}

_ _ (’Y2+ – ?’1)(’Y2’ + ?’1)
— . (15)

OYwoto

Finally, explicit expressions for the four tensor ele-

ments are obtained by separating (15) into real and

imaginary parts, then alternately adding and subtract-

ing the four equations while applying (7) and ignoring

second-order terms. The results, valid to the first order

in the magnetic field, are

Eq. (16) constitutes the second step of the diagnostic

procedure. These equations apply for arbitrary co(~) as

long as & and flz are proportional to Bz. This restriction

limits the magnetic field to the region

[q’ - j7T” [ << I e,’ - j,,” I . (17)

The equations that apply with u(~)<<l are of interest.

Combining (4) and (16) gives

(X2(32~ /3&. (18)

Because of the last relationship between the four vari-

ables, the dc Hall mobility can be written in either of

two forms, each independent of frequency:

(19)

for the special case of CO(7)<<1.

IV. APPARATUS

Fig. 5 shows a typical germanium sample and circular

sample holder for X-band measurement of conductivity

and Hall effect. The accuracy of the measurements is

eornewhat dependent upon the quality of co~tact be-

tween sample and waveguide and can be improved by

alloying an “ohmic” region around the sample periphery.

The holder shown has been machined out slightly from

one end to provide a small “ledge” for the sample to

contact.

The interferometer used to measure A and @ is a

conventional waveguide bridgeg–13 as shown in Fig. 6.

Troublesome internal reflections are minimized with the

four tuners, Bridge balance is characterized by null

output from the “magic” tee when the total attenuation

and phase shift of the upper and lower arms are equal.

Measurement is made by substituting a filled sample

holder for an empty one while noting the change of the

attenuator and precision short necessary to maintain

balance. The change in attenuation and phase shift are

equal to A and (0 —/?ld), respectively.

The polarization rotation angle @ and ellipticity X

are measured with the Faraday effect apparatus of

Fig. 7.14,16 With zero magnetic field, null output is ob-

tained when the output waveguide is perpendicular to

the input waveguide. Resistive films in the transitions

minimize internal reflections under these conditions.

The magnetic field rotates the plane of polarization and

causes the output wave to be slightly elliptic. Adjust-

ment of the rotating coupling for minimum output then

yields @, while X is obtained by comparing the major

and minor axes of the ellipse with the precision at-

tenuator.

V. CONCLUSION

The preceding discussion has given the basis for a

guided wave technique for measuring the complex

microwave conductivity and Hall effect of semicon-

ductors. Because of the complexity of the mathematics,

a digital computer is employed in an intermediate step

of the diagnostic procedure. The technique assumes only

that the magnetic field is small and takes losses and

internal multiple reflections into consideration exactly.

Although the general analysis is independent of a(r),

explicit expressions for Hall mobility are also derived

which are valid for co(~)<<l.
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Fig. 5– -Sample holder assembly for X-band measurements. Styrofoam plug holds
against “ledge” in waveguide.
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